Audio-Visual Glance Network for Efficient Video Recognition

计算机科学 人工智能 稳健性(进化) 编码器 视听 计算机视觉 视频处理 多媒体 操作系统 化学 生物化学 基因
作者
Muhammad Adi Nugroho,Sangmin Woo,Sumin Lee,Changick Kim
标识
DOI:10.1109/iccv51070.2023.00931
摘要

Deep learning has made significant strides in video understanding tasks, but the computation required to classify lengthy and massive videos using clip-level video classifiers remains impractical and prohibitively expensive. To address this issue, we propose Audio-Visual Glance Network (AVGN), which leverages the commonly available audio and visual modalities to efficiently process the spatio-temporally important parts of a video. AVGN firstly divides the video into snippets of image-audio clip pair and employs lightweight unimodal encoders to extract global visual features and audio features. To identify the important temporal segments, we use an Audio-Visual Temporal Saliency Transformer (AV-TeST) that estimates the saliency scores of each frame. To further increase efficiency in the spatial dimension, AVGN processes only the important patches instead of the whole images. We use an Audio-Enhanced Spatial Patch Attention (AESPA) module to produce a set of enhanced coarse visual features, which are fed to a policy network that produces the coordinates of the important patches. This approach enables us to focus only on the most important spatio-temporally parts of the video, leading to more efficient video recognition. Moreover, we incorporate various training techniques and multi-modal feature fusion to enhance the robustness and effectiveness of our AVGN. By combining these strategies, our AVGN sets new state-of-the-art performance in multiple video recognition benchmarks while achieving faster processing speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Myrna发布了新的文献求助10
刚刚
刚刚
Myrna发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
Myrna发布了新的文献求助10
1秒前
Myrna发布了新的文献求助10
1秒前
NexusExplorer应助wcy采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
Myrna发布了新的文献求助10
2秒前
2秒前
2秒前
Myrna发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
领导范儿应助ellen采纳,获得30
3秒前
3秒前
3秒前
3秒前
3秒前
smottom应助wuxiaodou采纳,获得10
3秒前
3秒前
3秒前
搜集达人应助高大炮采纳,获得10
3秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768867
求助须知:如何正确求助?哪些是违规求助? 5577225
关于积分的说明 15419796
捐赠科研通 4902658
什么是DOI,文献DOI怎么找? 2637844
邀请新用户注册赠送积分活动 1585759
关于科研通互助平台的介绍 1540922